Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent.
نویسندگان
چکیده
Despite intense efforts by the medical and pharmaceutical communities, Staphylococcus aureus continues to be a pervasive pathogen that causes a myriad of diseases and a high level of morbidity and mortality among infected patients. Thus, discovering or designing novel therapeutics able to kill both drug-resistant and drug-sensitive S. aureus remains a top priority. Bacteriolytic enzymes, mostly from phage, have shown great promise in preclinical studies, but little consideration has been given to cis-acting autolytic enzymes derived from the pathogen itself. Here, we use the S. aureus autolysin LytM as a proof of principal to demonstrate the antibacterial potential of endogenous peptidoglycan-degrading enzymes. While native LytM is only marginally bactericidal, fusion of LytM to the lysostaphin cell wall binding domain enhances its anti-staphylococcal activity approximately 540-fold, placing it on par with many phage lysins currently in preclinical development. The potential to therapeutically co-opt a pathogen's endogenous peptidoglycan recycling machinery opens the door to a previously untapped reservoir of antibacterial drug candidates.
منابع مشابه
LytM Fusion with SH3b-Like Domain Expands Its Activity to Physiological Conditions
Staphylococcus aureus remains one of the most common and at the same time the most dangerous bacteria. The spreading antibiotic resistance calls for intensification of research on staphylococcal physiology and development of new strategies for combating this threatening pathogen. We have engineered new chimeric enzymes comprising the enzymatically active domain (EAD) of autolysin LytM from S. a...
متن کاملLytU-SH3b fusion protein as a novel and efficient enzybiotic against methicillin-resistant Staphylococcus aureus
Methicillin-resistant Staphylococcus aureus (MRSA) is a challenging infectious agent worldwide. The ever growing antibiotic resistance has made the researchers to look for new anti-staphylococcal agents. Autolysins are staphylococcal enzymes that lyse bacterial cell wall for cell division. Autolysins can be used as novel enzybiotics (enzymes have antibiotic effects) for staphylococcal ...
متن کاملEvaluation of cell wall binding domain of Staphylococcus aureus autolysin as affinity reagent for bacteria and its application to bacterial detection.
We evaluated the cell wall binding (CWB) domain of Staphylococcus aureus autolysin as an affinity reagent for bacteria. A fusion of CWB domain and green fluorescent protein (CWB-GFP) bound to S. aureus with a dissociation constant of 15 nM. CWB-GFP bound to a wide range of gram-positive bacteria, but not to most gram-negative bacteria. We suspected that the outer membrane of gram-negative bacte...
متن کاملConstruction of a New Fusion Protein Vector Associated to Fibronectin Binding Protein A and Clumping Factor A Derived from Staphylococcus aureus NCTC8325
Objective(s) Staphylococcus aureus is a leading cause of many nosocomial and community acquired infections. According to many reports, antibiotic therapy can not guarantee the eradication of S. aureus infections. Thus designing an adhesin based vaccine could restrain the S. aureus infections. This study designed for construction of a new fusion protein vaccine against S. aureus infections base...
متن کاملActivity of the major staphylococcal autolysin Atl.
The major autolysin of Staphylococcus aureus (AtlA) and of Staphylococcus epidermidis (AtlE) are well-studied enzymes. Here we created an atlA deletion mutant in S. aureus that formed large cell clusters and was biofilm-negative. In electron micrographs, the mutant cells were distinguished by rough outer cell surface. The mutant could be complemented using the atlE gene from S. epidermidis. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS microbiology letters
دوره 362 2 شماره
صفحات -
تاریخ انتشار 2015